
2020-11-22

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Inheritance: Vol. 2

2
Inheritance: Vol. 2

Outline

• In this lesson, we will:

– Describe a linked list class with no member variables

– Look at how to implement a linked list class derived from this class

– Consider the use of reference variables

3
Inheritance: Vol. 2

Deep dive…

• This topic will now do a deep dive on combining so many different
topics we have already discussed

– We are going to create a linked list class
that has no member variables

– The linked list class we created will derive from this linked list class

4
Inheritance: Vol. 2

Deep dive…

• In an operating system design, there is often already memory
allocated for pointers to the heads of various linked lists

– That user may want the functionality we’ve already implemented but
may want to specify their own pointer to the list head

• We want to give the option of the user specifying their own
p_list_head_ variable

– This has horrible potential consequences for encapsulation,
but if the user is willing to take the risk

• In other cases, we want the linked list to have its own p_list_head_

1 2

3 4

2020-11-22

2

5
Inheritance: Vol. 2

Deep dive…

• Let us define a Base_linked_list class as follows:

– Everything is copied from Linked_list,
with only the following changes:

class Base_linked_list {

public:

Base_linked_list(Node *&p_new_list_head);

// All else identical except for name changes...

private:

Node *&ref_p_list_head_;

// Friends are all similar except for name changes...

};

6
Inheritance: Vol. 2

Deep dive…

• As for the constructor:
Base_linked_list::Base_linked_list(Node *&new_p_list_head):

ref_p_list_head_{ p_new_list_head } {

// Empty constructor

}

• In all other member functions, destructors, etc., change any use of
p_list_head_ to ref_p_list_head_

7
Inheritance: Vol. 2

Deep dive…

• Now you can pass your own list head pointer:
int main() {

Node my_head_ptr{};

Base_linked_list my_list{ my_head_ptr };

my_list.push_front(4.2);

my_list.push_front(10.1);

std::cout << my_list << std::endl;

std::cout << my_head_ptr->value() << std::endl;

std::cout << my_head_ptr->next_node()->value() << std::endl;

return 0;

}
Output:

head -> 10.1 -> 4.2 -> nullptr
10.1
4.2

8
Inheritance: Vol. 2

Deep dive…

• The linked list class may now be implemented as follow:

class Linked_list : public Base_linked_list {

public:

Linked_list();

private:

Node *p_list_head_;

};

Linked_list::Linked_list():

Base_linked_list{ p_list_head_ } {

// Empty constructor

}

5 6

7 8

2020-11-22

3

9
Inheritance: Vol. 2

Overhead?

• What is the overhead of all this?

– Fortunately, C++ compilers will usually optimize in such a way
so as to make it no different from having this complex web
of classes to having each class declared individually

• Consequently, it is almost always in your benefit to use inheritance

10
Inheritance: Vol. 2

Showing the relationship

• To show the relationship between base classes and derived classes,
we use the following format:

Linked_list

Sized_linked_list Tailed_linked_list

Base_linked_list

11
Inheritance: Vol. 2

No memory?

• Actually, there is some memory involved:

– Each object must occupy memory and information is needed
about the class inheritance

int main() {

Node *my_head{};

std::cout << sizeof(Base_linked_list) << std::endl;

std::cout << sizeof(Linked_list) << std::endl;

return 0;

} Output:
16
24

12
Inheritance: Vol. 2

Summary

• Following this lesson, you now

– Know of another example of inheritance

– Have seen another use of reference variables

– Understand that class inheritances can be extended in both directions

9 10

11 12

2020-11-22

4

13
Inheritance: Vol. 2

References

[1] https://en.wikipedia.org/wiki/Linked_list

[2] https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

#Subclasses_and_superclasses

14
Inheritance: Vol. 2

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

15
Inheritance: Vol. 2

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

13 14

15

